Wellcome

Total Tayangan Halaman

Sinar Gamma

Senin, 16 Mei 2011

Radioaktivitas – Sinar Gamma

by Pamungkas
Setelah tertunda sekian lama, saya ingin melanjutkan kembali serial tulisan saya tentang radioaktivitas, kali ini adalah Sinar Gamma. Sinar Gamma begitu istimewa dibandingkan dengan sinar/partikel radioaktif lainnya dikarenakan dia tidak memiliki massa dan muatan. Sinar Gamma memiliki panjang gelombang yang paling kecil dan energi terbesar dibandingkan spektrum gelombang elektromagentik yang lain, ( sekitar 10 000 kali lebih besar dibandingkan dengan energi gelombang pada spektrum sinar tampak ). Selain itu, sinar gamma memiliki daya ionisasi yang paling rendah namun jangkauan tembus yang paling besar dibandingkan sinal beta dan alfa
Sinar gamma muncul dari inti atom yang tidak stabil dikarenakan atom tersebut memiliki energi yang tidak sesuai dengan kondisi dasarnya (groundstate). Energi gamma yang muncul antara satu radioisotop dengan radioisotop yang lain adalah berbeda – beda dikarenakan setiap radionuklida memiliki emisi yang spesifik. Sinar gamma juga dapat ditemui di dalam alam semesta, dimana sinar gamma berjalan melintasi jarak yang teramat luas di alam semesta , yang kemudian pada akhirnya terserap oleh atmosfer bumi. Perlu diketahui, panjang gelombang yang beberbeda pada gelombang elektromagnetik akan menembus atmosfer dengan kedalaman yang berbeda pula.
Karena daya tembusnya yang begitu tinggi, sinar gamma mampu menembus berbagai jenis bahan, termasuk jaringan tubuh manusia. Material yang memiliki densitas tinggi seperti timbal sering digunakan sebagai shielding untuk memperlambat atau menghentikan foton gamma yang memancar.
Sinar gamma awalnya ditemukan oleh seorang fisikawan prancis yang bernama Pada waktu itu, tahun 1896, om Henri :mrgreen: menemukan mineral uranium yang ternyata menghitamkan plat fotografi meskipun dilapisi oleh lapisan kertas buram tebal.
Sebelum itu, Rontgen telah menemukan Sinar- X dan Becquerel melihat bahwa sinar yang dipancarkan oleh uranium tersebut mirip dengan sinar X, sehingga ia menyebut sinar tersebut “metallic phosphorescence.”
Untuk mengetahui secara mendalam tentang sinar gamma tentu perlu diketahui macam interaksi yang terjadi pada sinar gamma terhadap materi yakni,
  1. Efek Fotolistrik
  2. Efek Compton
  3. Produksi pasangan
Tiga interaksi yang terjadi pada sinar gamma terhadap materi ini akan dibahas pada tulisan saya yang lain
Daya tembus dari foton gamma memiliki banyak aplikasi dalam kehidupan manusia, dikarenakan ketika sinar gamma menembus beberapa bahan, sinar gamma tidak akan membuatnya menjadi radioaktif. Sejauh ini ada tiga radionuklida pemanacar gamma yang paling sering digunakan yakni cobalt-60, cesium-137 dan technetium-99m.
Cesium -137 bermanfaat digunakan dalam perawatan kanker, mengukur dan mengontrol aliran fluida pada beberapa proses industri, menyelidiki subterranean strata pada oil wells, dan memastikan level pengisian yang tepat untuk paket makanan, obat – obatan dan produk yang lain.
Pada Cobalt-60 bermanfaat untuk: sterilisasi peralatan medis di rumah sakit, pasteurize beberapa makanan dan rempah, sebagai terapi kanker, mengukur ketebalan logam dalam stell mills.
Sedangkan Tc-99m adalah isotop radioaktif yang paling banyak digunakan secara luas untuk studi diagnosa sebagai radiofarmaka. (Technetium-99m memiliki waktu paru yang lebih singkat). Radiofarmaka ini digunakan untuk mendiagnosa otak, tulang, hati dan juga mampu menghasilkan pencitraan yang dapat digunakan untuk mendiagnosa aliran darah pasien
Sebagian besar manusia terpapar gamma secara alamiah yang terjadi pada beberapa radionuklida tertentu seperti potassium-40 yang dapat ditemukan pada tanah dan air, dan juga daging serta makanan yang memiliki kadar potassium tinggi seperti pisang. Radium juga merupakan sumber dari paparan radiasi gamma. Namun, bagaimanapun juga, peningkatan penggunaan terhadap instrumentasi kedokteran nuklir (seperti untuk diagnosa tulang, thyroid, dan lung scans) juga turut memberikan andil terhadap proporsi peningkatan paparan pada banyak orang.
Kebanyakan paparan yang terjadi pada sinar gamma merupakan jenis paparan eksternal. Sinar gamma ( dan juga sinar X ) sebagaimana diketahui sebelumnya- mudah untuk melintasi jarak yang besar di dalam udara dan mampu menembus jaringan tubuh hingga beberapa sentimeter. Sebagian besar dari sinar gamma tersebut memiliki energi yang cukup untuk menembus tubuh manusia, dan memapar semua organ yang ada di dalam tubuh tersebut.
Sehingga dalam kasus sinar gamma, baik paparan eksternal dan internal menjadi perhatian utama dalam proteksi dan keselamatan radiasi. Ini dikarenakan sinar gamma mampu melintas dengan jarak yang lebih jauh ketimbang partikel alfa dan beta serta memiliki cukup energi untuk melintasi keseluruhan tubuh, sehingga berpotensial untuk memapar semua organ tubuh.
Sejumlah besar dari radiasi gamma secara besar – besaran mampu melewati tubuh tanpa berinteraksi dengan jaringan. Ini dikarenakan pada tingkat atomik, tubuh sebagian besar terdiri dari ruangan kosong sedangkan sinar gamma memiliki ukuran yang lebih kecil dari ruang – ruang tersebut. Berbeda dengan partikel alfa dan beta yang ketika berada di dalam tubuh akan melepaskan semua energi yang mereka miliki dengan menubruk jaringan dan menyebabkan kerusakan pada jaringan tersebut.
Sinar gamma bisa mengionisasi jaringan secara langsung atau menyebabkan yang disebut dengan “secondary ionizations.” yakni ionisasi yang disebabkan ketika energi dari sinar gamma ditransfer ke partikel atomik seperti elektron ( identik dengan partikel beta) yang kemudian partikel  berenergi tersebut akan berinteraksi dengan jaringan untuk membentuk ion, inilah yang disebut secondary ionizations.

0 komentar:

Posting Komentar